Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate.
نویسندگان
چکیده
Telomerase, a ribonucleoprotein acting as a reverse transcriptase, has been identified as a target for cancer drug discovery. The synthetic, non-nucleosidic compound, BIBR1532, is a potent and selective telomerase inhibitor capable of inducing senescence in human cancer cells (). In the present study, the mode of drug action was characterized. BIBR1532 inhibits the native and recombinant human telomerase, comprising the human telomerase reverse transcriptase and human telomerase RNA components, with similar potency primarily by interfering with the processivity of the enzyme. Enzyme-kinetic experiments show that BIBR1532 is a mixed-type non-competitive inhibitor and suggest a drug binding site distinct from the sites for deoxyribonucleotides and the DNA primer, respectively. Thus, BIBR1532 defines a novel class of telomerase inhibitor with mechanistic similarities to non-nucleosidic inhibitors of HIV1 reverse transcriptase.
منابع مشابه
Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment.
Effective strategies to reverse or prevent chemotherapeutic resistance are required before cancer therapies can be curative. Telomerase is the ribonucleoprotein responsible for de novo synthesis and maintenance of telomeres, and its activity is predominantly observed in cancer cells. The telomerase enzyme has been successfully inhibited or inactivated to sensitize cells to cellular stresses; ho...
متن کاملاثر سایتوتوکسیک مهارکنندگان زیرواحد کاتالیتیکی (hTERT) و نوکلئوتیدی (hTERC) تلومراز در سلول های لوسمی پرومیلوسیتیک حاد
Background and purpose: Telomerase activity has a major role in acute promyelocytic leukemia (APL). It also has a critical role in disease recurrence. This research aimed at studying the cytotoxic effects of telomerase inhibition using oligonucleotide-based molecule against human telomerase RNA template (hTERC antisense) and non-nucleoside small molecule targeting catalytic subunit (BIBR5132) o...
متن کاملSelective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532.
Telomerase represents an attractive target for a mechanism-based therapeutic approach because its activation has been associated with unlimited proliferation in most cancer cells. Recently, a nonnucleosidic small molecule inhibitor, BIBR1532 (2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid), has been identified that is highly selective for inhibition of telomerase, resulting in delayed g...
متن کاملKras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC
As shortened telomeres inhibit tumor formation and prolong life span in a KrasG12D mouse lung cancer model, we investigated the implications of telomerase in Kras-mutant NSCLC. We found that Kras mutations increased TERT (telomerase reverse transcriptase) mRNA expression and telomerase activity and telomere length in both immortalized bronchial epithelial cells (BEAS-2B) and lung adenocarcinoma...
متن کاملKnockdown of hTERT and Treatment with BIBR1532 Inhibit Cell Proliferation and Invasion in Endometrial Cancer Cells.
Telomerase activity and expression of the catalytic protein hTERT are associated with cell proliferation and advanced stage in endometrial cancer. Our objective was to evaluate the effect of inhibition of hTERT by siRNA and BIBR1532 on cell growth, apoptosis and invasion in endometrial cancer cells. Knockdown of hTERT or treatment of the cells with BIBR1532 decreased telomerase activity, inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 18 شماره
صفحات -
تاریخ انتشار 2002